

From Climate Projections to Adaptive Governance: Multi-Dimensional Approach for Rural Risk Management

The Joint Lab

Sino-Bulgarian Joint Lab on Climate Change Adaptative Governance for Rural Ecosystem

To promote international collaboration in scientific research, technology development and talents training in the field of risk management and adaptive governance of rural ecosystems under climate change.

8

The Joint Lab

Sino-Bulgarian Joint Lab on Climate Change Adaptative Governance for Rural Ecosystem

Rural Climate Risk

- Rural climate risk poses a significant challenge to global sustainable development and rural areas at large
- Rural areas are often overlooked in discussions of climate impacts and risks, yet they are a key part of the solution

Source: IPCC Climate Change 2021, C40 CITIES Report

rain threat (North American cities). Heatwave, flood, and landslide risks (Latin American cities). heavy rain, Heatwave, extreme hot weather (European cities).

-0.5

0.5

0

Change (standard deviation of interannual variability)

1.0

1.5

Flood, heatwave, and drought risks are (West and South Asian cities).

Flood, heatwave, and heavy

and

risks

- Flood, extreme hot weather, and drought risks (African cities).
- Flood, drought, and extreme hot weather risks (East Asian cities).
- Flood, extreme hot weather, and drought risks are (Southeast Asian and Pacific cities).

Focus on rural living environment and agroforestry complex ecosystem

Climate adaptive data base

- Historical meteorological and disaster data
- Ecological data
- Environmental data
- Social and economic data

FIGURE 2. Average monthly temperature and rainfall for Bulgaria, 1991–2020²⁶

2 Climate change prediction and risk assessment

- Predicting climate change trends in rural area
- Predicting the types of climate disasters
- Screening climate hazards and risk factors
- Establish a climate risk assessment index
- Conducting risk assessment

The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures.

 Average
 Jan
 Feb
 Mar
 Apr
 Jun
 Jun
 Jun
 Mag
 Sep
 Oct
 Nov
 Dec

 High
 42°
 46°
 55°
 65°
 74°
 82°
 80°
 78°
 55°
 53°
 44°

 Temp.
 34°
 37°
 54°
 54°
 71°
 71°
 55°
 67°
 56°
 45°
 45°
 56°
 45°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°
 56°<

Land use, land cover and local meteorological data of the research sites have been collected and analyzed.

- A multidimensional model for climate risk assessment
- FLUS model for land-use prediction and statistical downscaling of CMIP6 Data for climate modeling
- Climate, land use, and socio-economic factors are considered for the assessment
- Urban climate risks are quantified under climate and land-use change scenarios
- Geographical detector is used to analyze main influencing factors of climate risk

3

Rural living environment

- □ Assess the exposure of rural living environment and form risk assessment index.
- □ Simulate the degree of damage, and evaluate its spatial pattern characteristics.
- Propose adaptive strategies of rural living environment under multiple scenarios.

Rural agroforestry complex ecosystem

- □ Assess the exposure the system and form risk assessment index.
- □ Analyze its sensitivity, stability, and resilience. Assess its spatial pattern.
- Propose adaptive strategies under multiple scenarios.

Rural Economic Vulnerability Assessment and Governance Measures

- Assess the direct and indirect losses suffered by agriculture, forestry, infrastructure, residents' property and health;
- Obtain the relationship between economic losses and factors causing climate disasters;
- Propose climate adaptation strategies to enhance the resilience.

Climate Change Vulnerability Assessment Index System for Rural Areas

Determine main factors influencing climate change vulnerability in rural areas, and identify potential spatial patterns of climate vulnerability

Main	Cub	Indicators	Brown	IID	Dafaranaa	Data	-	1				Nambiar			
Component	Sub- Component	Indicators	Proxy	HR	Reference	Source						et al.,			
Exposure	Climate	Variability	standard deviation (SD) of mean	+	Hahn et	Shanghai						2001)			
	variability	of maximum	monthly maximum temperature in		al., 2009	Meteorolo		Agriculture	agricultural	Total agricultural production (ten	·	(Srinivasa	Statistical	Factor 1	
		temperature	the past 5 years			gy Bureau			(AP)	thousand yuan)		2019)	s s s		
		(STDMX)	CD of more monthly minimum		Halon at	Chanabai		Food	cultivated	Area of cultivated land	•	(Hoque et	Data		
		of minimum	temperature in the past 5 years	Ŧ	al 2009	Meteorolo		production	land (ACL)			al., 2022)	Center for		A
		temperature	temperature in the past 5 years		41., 2005	gy Bureau							Resources	2	
		(STDMN)				07							Environm		X
		Variability	SD of average monthly precipitation	+	Hahn et	Shanghai							ental	ALC AND	
		of rainfall	in the past 5 years		al., 2009	Meteorolo							Sciences,	ATE-	18
	natural	(STDP) Exposure to	proportion of coastline to area	+	Hagenloc	LANDSA							Academy		12
	disaster	storm surges	(km/m ²)		her et al	T 8							of		
		(EXPSS)			(2018)	imagery							Sciences	200	
						https://eart		Access to	distance to	Distance to city center (puxi)	+	(Gu et al.,	LANDSA		
						hexplorer.		resources	(DCC)	measured by centroid (kilometers)		2018)	T 8	E.	
Sensitivity	demographi	Female	Proportion of registered female	+	(Hagenloc	Statistical			(Dec)				https://eart		
Sensitivity	c pressure	population	population	L.	her et al.	Yearbook							hexplorer.	d	
		(FPOP)	1-1		2018)	s		D. 3	1. 11.	D	<u> </u>	(7	usgs.gov/	Factor 4	
		Population	Total population divided by	+	Xue et al.	Statistical		Built	(PBS)	total land cover	+	(Feng et al 2020)	LANDSA T 8		
		density	administrative area (people/ha)		(2019);	Yearbook		Sumees	(120)	total land cover		un, 2020)	imagery		
		(POPD)			Damel et	8							https://cart		
		Dependency	Dependency ratio, proportion of	+	Hahn et	Statistical							hexplorer.		
		ratio (DR)	people aged <15 years and >65		al., 2009	Yearbook		Water	Water cover	Proportion of area covered by water	+	(Hagenloc	LANDSA	S motor	N
			years divided by total population			s			(AW)			her et al.,	T 8		-
		Population	Number of births - number of	+	(Zhou et	Statistical						2018)	imagery	and the second shows	
		growth	deaths divided by average		al., 2014)	Yearbook							https://eart	and the second	1243
	Cail baalab	(PGR)	population		A	8 Collegide							usgs.gov/	Lamer ?	23
	Son-nearm	(CEC)	Cation exchange capacity	1.	Kyei et al	sougnos	Adaptability	Landscape	landscape	Shannon diversity index	+	(Kwabena	LANDSA	men se	
		(CLC)			(2017)	https://soil			diversity			Autwi et	T 8		
					(Nambiar	grids.org			(SIDI)			al., 2015)	https://cart		
					et al.,								hexplorer.	Values of Factors (SE	(s)
		Soil	Nitrogen content in soil 100cm-		2001) Hagenlog	Soiloride						(T	usgs.gov/		-,
		Nitrogen	200cm mean cg/kg		her et al	at			shape (LSI)	Landscape snape index (mean)	1	(Feng et al., 2020)	T 8	< -1.5 Std. Dev.	
		(NC)			(2018);	https://soil						,	imagery	-1.50.50 Std. Dev.	
					Asare-	grids.org							https://eart	-0.50 - 0.50 Std. Dev.	•
					Kyci et al.								hexplorer.	0.50 - 1.5 Std. Dev.	
				1	(Nambiar				Healthy	NDVI	+	(Asare-	LANDSA	1.5 - 2.5 Std. Dev.	
					et al.,				vegetation			Kyei et	T 8	> 2.5 Std. Dev.	
					2001)				(NDVI)			al., 2017)	imagery https://arct		
		Organic	Soil organic carbon stock 100-	·	Hagenloc	Soilgrids							hexplorer.		
		carbon stock	200cm mean cg/kg		her et al	at https://soil							usgs.gov/		
		(300)			(2018);	indps://soil									

Quantitative study on the relationships between smog and online reviews from the perspective of risk perception

Qiang Li^{*a,b,c}, Xiaona Guo^{*}, Veselin Krustev⁴, Jianming Miao^{*}, Heli Lu^c, Jiangping Qiu^b, Shengquan Che^{*b,c} 'solad of Denis Mondul *in Time University*. Steadul 200240. Chev

School of Agriculture and Bology, Shenghai Jiao Ting University, Samphai 202840, Ohta Colleg of Gargedy and Bology, Shenghai Jiao Ting University, Samphai 202840, Ohta Colleg of Gargedy and Environmental Science / Kry Source Nationary of Hollow River Civiliantia and Sastatuable Development & Gillaborative Innovation Center In Vision River Collisional of Hearn Privace, Samo Intervinse, Kangfor (2020), China Imatiate of Agricultura Examina, Agricultura Atadomy, Spin 1173, Balgoria Imatiated of Agricultura Examina, Langhout 4001, China

ARTICLEINFO

Keywords: Online reviews Smog Risk perception A B S T R A C T A present, nolline reviews played an important rule in the governance of environmental problems, Based on the theory of risk preception, we used online reviews of the smoot from 2014 to 2018 as the data source to analyze the spatiotemporal difference between PM2₃ concentration and online reviews. We summarise the correlation mechanism between mosq and online reviews. The conditions are as follows: (1) From the perspective of the relationship between mosq and online reviews. The conditions are as follows: (1) From the perspective of the relationship between mosq and online reviews. The conditions are as follows: (1) From the perspective of the relationship between mosq and online reviews. The conditions are as follows: (1) From the perspective of the province of the province of the perspective of the environmental sources (2) are the perspective of the Chinese public and the government's environmential government's environment and angular the environmental metrics (2). The specific of the perspective of the constaints with theory of Environmential Kaures (2) are the reviews of the to the theoretical reference for the is constaints with theory of Environmential Kaures (2) are the reviews of the continuement of the device for the transference for the is constaints with theory of Environment Kaures (2) are the reviews of the to theoretical reference for the is constaints with theory of Environment constant can adjust the environmental protection strategy according to the risk perception through online reviews.

1 paper published, 1 paper under review

Qiang Li, Xiaona Guo, Veselin Krustev, Jianming Miao, Heli Lu, Jiangping Qiu, Shengquan Che*. Quantitative study on the relationships between smog and online reviews from the perspective of risk perception [J]. Environmental Impact Assessment Review, 2024, 105: 107437.(Published)

Caihua Yang, Hao Wu, Yifeng Qin, Dobri Dunchev, Shengquan Che*. Bulgarian Rural Climate Adaptability: A New Approach to Evaluation Metrics, Ecological Indictors. (Under review)

Development of a Rural Climate Adaptability Assessment and Construction Guideline is in progress

Rural Climate Adaptability Assessment and Construction Guideline

Climate Change Vulnerability Assessment Index System for Rural Areas Climate Change Vulnerability Assessment of Rural Areas in Shanghai

- Rural Climate Risk Report-Bulgaria
- Future climate simulation of Bulgaria based on CMIP6
- Temperature from 2025 to 2100 is projected to show a fluctuating upward trend, while precipitation is expected to demonstrate a fluctuating downward trend.
- Extreme weather events negatively affect agricultural output and food security
- High-risk of river floods, droughts and wildfires

Future average temperature distribution in Bulgaria under different scenario

Rural Climate Risk Report-Bulgaria

Climate Risk Assessment—Bulgaria

A multi-scenario risk assessment was future climate conducted for conditions rural Bulgaria, in evaluating climate change vulnerability and risks for Samokov municipality and six surrounding villages under varying climate impacts.

- In Samokov, thermal risk zones predominantly cluster in peripheral areas of the urban core, while highrisk areas for rainfall-induced flooding are concentrated in northern sectors of the town.
- Adaptation strategies targeting highrisk zones in Samokov include environmental regeneration including green infrastructure expansion and population protection measures informed by localized climate projections.

Vulnerability Drivers & Assessment

Shanghai's rural climate vulnerability index (CVI) integrates IPCC frameworks with 21 indicators, identifying six key factors (67% variance): socio-ecological-built systems, demographic pressures, climate hazards, sponge city capacity, population sensitivity, and landscape fragmentation.

At-Risk Populations

7% of rural residents (542,377 people), including 8% of children and elders, live in high-CVI zones facing amplified coastal flooding, heat stress, and infrastructure gaps under climate change.

Resilience Priorities

Strengthen emergency transport/networks, protect farmland via eco-agriculture, expand sponge city features, and prioritize elderly/child-focused adaptation resources (housing, warnings, healthcare).

Fig. 3 Spatial distribution of indicator values for EXPSS, STDP, NDVI, POWER, PBS, CEC, DR, AGPOP, and SHDI throughout rural areas in Shanghai

Fig. 4 Mapped values of standard deviations of factors a) socio-ecological-built characteristics b) demographic pressure c) weather variability and climate hazards 4) sponge city characteristics 5) demographic sensitivity 6) landscape characteristics

Fig. 5 a) Mapped values of standard deviations of CVI values b) Gi* Hotspot analysis of CVI

Planning Strategies for Climate Adaptive Rural Ecosystems

- Consider spatiotemporal pattern changes of risk exposure, sensitivity, adaptability, and vulnerability of rural living environment and agroforestry ecosystems under climate change.
- Propose adaptive planning strategies for rural ecosystems that encompass different scenarios and time periods.

Adaptive Governance and Management Measures

- Develop measures such as climate change trend prediction, risk diagnosis, vulnerability assessment, and adaptive planning under multiple scenarios.
- Develop policies and regulations for climate adaptation governance.

Adaptive planning and governance measures

4

Climate Adaptive Strategies—Bulgaria

- Increasing the number of vegetation patches while reducing inter-patch distances and improving connectivity can effectively enhance the ability of green space vegetation to mitigate urban heat effects.
- Optimize rural rainfall response strategies by integrating natural water retention systems with reinforced drainage infrastructure and community-based early warning mechanisms.

Climate Adaptive Strategies——Shanghai

• Including the optimization modes for road, greenspace layout, and buildings.

Demonstration area in Fengxian, Shanghai

Modular Shade Facilities

- Modular street
 planting boxes
- Set up green plant landscapes quickly
- Providing shade and transpiration cooling from plants

Public Green Space Optimization

- Rainwater collection system for colling and runoff reduction
- Cooling Spaces with shading, spray or water mist facilities
- Encourage residents to participate in maintenance

To improve the capacity of climate adaptation from the perspective of collective action of stakeholders in LC

Sta	keholder	Role	Activities					
	Shanghai Municipal Government	Strategy and policy makers	Determining reduction target, Funding, Evaluation of the implementation					
Government	District Government	Planners; policy makers	Developing District reduction plan, Funding					
	Town Government	Planners; Sponsor	Developing town reduction plan, Develop detailed rules, Financial balance					
Village Collectiv	e Organization	Land owner; Implementer	Negotiating with enterprise owners, Receive compensation					
Farmer		Land use rights holder	Participate, Receive compensation					
Enterprise		Land use rights owner	Receive compensation					
Planner, Expert		Technical Support	Investigation , Policy evaluation, Participate					

Climate Adaptive Strategies ——Governance

Reconstruction of Land Property Rights and Intervention of Social Capital into rural area based the land on consolidation, to improve the tenacity of rural area facing climate change risk.

